Plant disease diagnosis using deep transfer learning architectures- VGG19, MobileNetV2 and Inception-V3
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Главные авторы: | Kobra, Khadija-Tul, Suham, Rahmatul Rashid, Fairooz, Maisha |
---|---|
Другие авторы: | Uddin, Jia |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
Brac University
2022
|
Предметы: | |
Online-ссылка: | http://hdl.handle.net/10361/17334 |
Схожие документы
-
Myocardial infarction detection using ECG signal applying deep learning techniques - ConvNet, VGG16, InceptionV3 and MobileNet
по: Promita, Samanta Tabassum, и др.
Опубликовано: (2022) -
Comparative analysis between Inception-v3 and other learning systems using facial expressions detection
по: Nivrito, AKM, и др.
Опубликовано: (2016) -
Deep neural network models for COVID-19 diagnosis from CT-Scan, explainability and analysis using trained models
по: Islam, Tahsin, и др.
Опубликовано: (2021) -
A comparative study of lung cancer prediction using deep learning
по: Mugdho, Aka Mohammad, и др.
Опубликовано: (2023) -
Detection of prodromal parkinson’s disease with fMRI data and deep neural network approaches
по: Shahriar, Farhan, и др.
Опубликовано: (2021)