Plant disease diagnosis using deep transfer learning architectures- VGG19, MobileNetV2 and Inception-V3
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
主要な著者: | Kobra, Khadija-Tul, Suham, Rahmatul Rashid, Fairooz, Maisha |
---|---|
その他の著者: | Uddin, Jia |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
Brac University
2022
|
主題: | |
オンライン・アクセス: | http://hdl.handle.net/10361/17334 |
類似資料
-
Myocardial infarction detection using ECG signal applying deep learning techniques - ConvNet, VGG16, InceptionV3 and MobileNet
著者:: Promita, Samanta Tabassum, 等
出版事項: (2022) -
Comparative analysis between Inception-v3 and other learning systems using facial expressions detection
著者:: Nivrito, AKM, 等
出版事項: (2016) -
Deep neural network models for COVID-19 diagnosis from CT-Scan, explainability and analysis using trained models
著者:: Islam, Tahsin, 等
出版事項: (2021) -
A comparative study of lung cancer prediction using deep learning
著者:: Mugdho, Aka Mohammad, 等
出版事項: (2023) -
Detection of prodromal parkinson’s disease with fMRI data and deep neural network approaches
著者:: Shahriar, Farhan, 等
出版事項: (2021)