Plant disease diagnosis using deep transfer learning architectures- VGG19, MobileNetV2 and Inception-V3
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Egile Nagusiak: | Kobra, Khadija-Tul, Suham, Rahmatul Rashid, Fairooz, Maisha |
---|---|
Beste egile batzuk: | Uddin, Jia |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2022
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/17334 |
Antzeko izenburuak
-
Myocardial infarction detection using ECG signal applying deep learning techniques - ConvNet, VGG16, InceptionV3 and MobileNet
nork: Promita, Samanta Tabassum, et al.
Argitaratua: (2022) -
Comparative analysis between Inception-v3 and other learning systems using facial expressions detection
nork: Nivrito, AKM, et al.
Argitaratua: (2016) -
Deep neural network models for COVID-19 diagnosis from CT-Scan, explainability and analysis using trained models
nork: Islam, Tahsin, et al.
Argitaratua: (2021) -
A comparative study of lung cancer prediction using deep learning
nork: Mugdho, Aka Mohammad, et al.
Argitaratua: (2023) -
Detection of prodromal parkinson’s disease with fMRI data and deep neural network approaches
nork: Shahriar, Farhan, et al.
Argitaratua: (2021)