3G and 4G paging success rate based mobile network anomaly detection using supervised and unsupervised learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering, 2022.
1. autor: | Ahasan, Md Rakibul |
---|---|
Kolejni autorzy: | Alam, Md. Golam Robiul |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2022
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/17164 |
Podobne zapisy
-
LRFS: online shoppers’ behavior based efficient customer segmentation model
od: Khan, Riyo Hayat
Wydane: (2023) -
A Study of gainful employment of learners receiving skills training in the informal sector using Machine Learning
od: Raizan, Syed Ahsan, i wsp.
Wydane: (2021) -
Speech emotion detection using supervised, unsupervised and feature selection algorithms
od: Rifat, Abu Nuraiya Mahfuza Yesmin, i wsp.
Wydane: (2019) -
Analysis on dengue severity using machine learning approach
od: Sayeed, Sanjana, i wsp.
Wydane: (2021) -
Anomaly clustering based on correspondence analysis
od: Islam, Humayra
Wydane: (2018)