3G and 4G paging success rate based mobile network anomaly detection using supervised and unsupervised learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering, 2022.
Autor principal: | Ahasan, Md Rakibul |
---|---|
Otros Autores: | Alam, Md. Golam Robiul |
Formato: | Tesis |
Lenguaje: | English |
Publicado: |
Brac University
2022
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/10361/17164 |
Ejemplares similares
-
LRFS: online shoppers’ behavior based efficient customer segmentation model
por: Khan, Riyo Hayat
Publicado: (2023) -
A Study of gainful employment of learners receiving skills training in the informal sector using Machine Learning
por: Raizan, Syed Ahsan, et al.
Publicado: (2021) -
Speech emotion detection using supervised, unsupervised and feature selection algorithms
por: Rifat, Abu Nuraiya Mahfuza Yesmin, et al.
Publicado: (2019) -
Analysis on dengue severity using machine learning approach
por: Sayeed, Sanjana, et al.
Publicado: (2021) -
Anomaly clustering based on correspondence analysis
por: Islam, Humayra
Publicado: (2018)