BanglaBait: using transformers, neural networks & statistical classifiers to detect clickbaits in New Bangla Clickbait Dataset
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022
Main Authors: | , , |
---|---|
מחברים אחרים: | |
פורמט: | Thesis |
שפה: | English |
יצא לאור: |
Brac University
2022
|
נושאים: | |
גישה מקוונת: | http://hdl.handle.net/10361/17128 |
id |
10361-17128 |
---|---|
record_format |
dspace |
spelling |
10361-171282022-08-28T21:01:36Z BanglaBait: using transformers, neural networks & statistical classifiers to detect clickbaits in New Bangla Clickbait Dataset Mahtab, Motahar Haque, Monirul Hasan, Mehedi Akon, Mujtahid Al-Islam Mostakim, Moin Department of Computer Science and Engineering, Brac University Clickbait Deep learning Bengali Online news Prediction Binary classification BERT Cognitive learning theory (Deep learning) Neural networks (Computer science) This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022 Cataloged from PDF version of thesis. Includes bibliographical references (pages 38-41). The art of luring us to click on certain content by exploiting our curiosity is recognized as clickbait. Clickbait might be aggravating at times because it is misleading. Several studies have worked on the detection of clickbait in online platforms as we transition from the Information Age to the Age of AI. Nonetheless, predicting clickbait in Bengali new articles is still a work in progress. Here, we use deep learning, the process of extracting pattern or feature from data using neural networks, to determine whether an online Bengali article is clickbait or not. We scrape data from online Bengali news articles, manually annotate them and employ deep nerural network architectures like CNN, Bi-LSTM,Bi-GRU and pre-trained fine-tuning language representation approaches –i.e. BERT, BanglaBERT, M-BERT to provide inputs for various types of classifiers. Finally, we evaluate the classifiers’ outputs and choose the best outcome to predict clickbait in Bengali news articles. MD. Motahar Mahtab Mehedi Hasan Monirul Haque B. Computer Science 2022-08-28T10:07:16Z 2022-08-28T10:07:16Z 2022 2022-01 Thesis ID 18301023 ID 18301055 ID 18301052 http://hdl.handle.net/10361/17128 en Brac University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. 41 pages application/pdf Brac University |
institution |
Brac University |
collection |
Institutional Repository |
language |
English |
topic |
Clickbait Deep learning Bengali Online news Prediction Binary classification BERT Cognitive learning theory (Deep learning) Neural networks (Computer science) |
spellingShingle |
Clickbait Deep learning Bengali Online news Prediction Binary classification BERT Cognitive learning theory (Deep learning) Neural networks (Computer science) Mahtab, Motahar Haque, Monirul Hasan, Mehedi BanglaBait: using transformers, neural networks & statistical classifiers to detect clickbaits in New Bangla Clickbait Dataset |
description |
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022 |
author2 |
Akon, Mujtahid Al-Islam |
author_facet |
Akon, Mujtahid Al-Islam Mahtab, Motahar Haque, Monirul Hasan, Mehedi |
format |
Thesis |
author |
Mahtab, Motahar Haque, Monirul Hasan, Mehedi |
author_sort |
Mahtab, Motahar |
title |
BanglaBait: using transformers, neural networks & statistical classifiers to detect clickbaits in New Bangla Clickbait Dataset |
title_short |
BanglaBait: using transformers, neural networks & statistical classifiers to detect clickbaits in New Bangla Clickbait Dataset |
title_full |
BanglaBait: using transformers, neural networks & statistical classifiers to detect clickbaits in New Bangla Clickbait Dataset |
title_fullStr |
BanglaBait: using transformers, neural networks & statistical classifiers to detect clickbaits in New Bangla Clickbait Dataset |
title_full_unstemmed |
BanglaBait: using transformers, neural networks & statistical classifiers to detect clickbaits in New Bangla Clickbait Dataset |
title_sort |
banglabait: using transformers, neural networks & statistical classifiers to detect clickbaits in new bangla clickbait dataset |
publisher |
Brac University |
publishDate |
2022 |
url |
http://hdl.handle.net/10361/17128 |
work_keys_str_mv |
AT mahtabmotahar banglabaitusingtransformersneuralnetworksstatisticalclassifierstodetectclickbaitsinnewbanglaclickbaitdataset AT haquemonirul banglabaitusingtransformersneuralnetworksstatisticalclassifierstodetectclickbaitsinnewbanglaclickbaitdataset AT hasanmehedi banglabaitusingtransformersneuralnetworksstatisticalclassifierstodetectclickbaitsinnewbanglaclickbaitdataset |
_version_ |
1814307935319228416 |