A color vision approach considering Reflection Co efficient based on Autoencoder techniques using deep neural networks

This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2021.

Библиографические подробности
Главные авторы: Mahmud, Shakib Izaz, Shovon, Sartaz Islam, Hasnat, Md. Abrar, Na s, Md. Fahim
Другие авторы: Alam, Md. Ashraful
Формат: Диссертация
Язык:English
Опубликовано: Brac University 2022
Предметы:
Online-ссылка:http://hdl.handle.net/10361/17125
id 10361-17125
record_format dspace
spelling 10361-171252022-08-28T21:01:34Z A color vision approach considering Reflection Co efficient based on Autoencoder techniques using deep neural networks Mahmud, Shakib Izaz Shovon, Sartaz Islam Hasnat, Md. Abrar Na s, Md. Fahim Alam, Md. Ashraful Department of Computer Science and Engineering, Brac University Auto Encoded Techniques Reflection Co efficient Neural networks Deep learning KNN ANN Random forest Logistic regression Naive bayes Decision tree Digital Illuminance meter Cognitive learning theory (Deep learning) Neural networks (Computer science) This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2021. Cataloged from PDF version of thesis. Includes bibliographical references (pages 46-48). Color vision approach using auto encoded technique is an effective way to detect objects. This approach considers various factors like movement detection, size and shape detection, color detection etc. Here we have considered reflection co efficient as another parameter to detect object material in different ambient lighting conditions. We are proposing to use deep learning methods to train our AI from values of light intensity of different objects in many controlled environments using digital illuminance meter also deep learning architecture on image data for detecting surface reflectance. Shakib Izaz Mahmud Md. Abrar Hasnat Sartaz Islam Shovon Md. Fahim Na s B. Computer Science 2022-08-28T08:38:47Z 2022-08-28T08:38:47Z 2021 2021-09 Thesis ID 17101269 ID 17101178 ID 17101276 ID 17101171 http://hdl.handle.net/10361/17125 en Brac University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. 48 pages application/pdf Brac University
institution Brac University
collection Institutional Repository
language English
topic Auto Encoded Techniques
Reflection Co efficient
Neural networks
Deep learning
KNN
ANN
Random forest
Logistic regression
Naive bayes
Decision tree
Digital Illuminance meter
Cognitive learning theory (Deep learning)
Neural networks (Computer science)
spellingShingle Auto Encoded Techniques
Reflection Co efficient
Neural networks
Deep learning
KNN
ANN
Random forest
Logistic regression
Naive bayes
Decision tree
Digital Illuminance meter
Cognitive learning theory (Deep learning)
Neural networks (Computer science)
Mahmud, Shakib Izaz
Shovon, Sartaz Islam
Hasnat, Md. Abrar
Na s, Md. Fahim
A color vision approach considering Reflection Co efficient based on Autoencoder techniques using deep neural networks
description This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2021.
author2 Alam, Md. Ashraful
author_facet Alam, Md. Ashraful
Mahmud, Shakib Izaz
Shovon, Sartaz Islam
Hasnat, Md. Abrar
Na s, Md. Fahim
format Thesis
author Mahmud, Shakib Izaz
Shovon, Sartaz Islam
Hasnat, Md. Abrar
Na s, Md. Fahim
author_sort Mahmud, Shakib Izaz
title A color vision approach considering Reflection Co efficient based on Autoencoder techniques using deep neural networks
title_short A color vision approach considering Reflection Co efficient based on Autoencoder techniques using deep neural networks
title_full A color vision approach considering Reflection Co efficient based on Autoencoder techniques using deep neural networks
title_fullStr A color vision approach considering Reflection Co efficient based on Autoencoder techniques using deep neural networks
title_full_unstemmed A color vision approach considering Reflection Co efficient based on Autoencoder techniques using deep neural networks
title_sort color vision approach considering reflection co efficient based on autoencoder techniques using deep neural networks
publisher Brac University
publishDate 2022
url http://hdl.handle.net/10361/17125
work_keys_str_mv AT mahmudshakibizaz acolorvisionapproachconsideringreflectioncoefficientbasedonautoencodertechniquesusingdeepneuralnetworks
AT shovonsartazislam acolorvisionapproachconsideringreflectioncoefficientbasedonautoencodertechniquesusingdeepneuralnetworks
AT hasnatmdabrar acolorvisionapproachconsideringreflectioncoefficientbasedonautoencodertechniquesusingdeepneuralnetworks
AT nasmdfahim acolorvisionapproachconsideringreflectioncoefficientbasedonautoencodertechniquesusingdeepneuralnetworks
AT mahmudshakibizaz colorvisionapproachconsideringreflectioncoefficientbasedonautoencodertechniquesusingdeepneuralnetworks
AT shovonsartazislam colorvisionapproachconsideringreflectioncoefficientbasedonautoencodertechniquesusingdeepneuralnetworks
AT hasnatmdabrar colorvisionapproachconsideringreflectioncoefficientbasedonautoencodertechniquesusingdeepneuralnetworks
AT nasmdfahim colorvisionapproachconsideringreflectioncoefficientbasedonautoencodertechniquesusingdeepneuralnetworks
_version_ 1814309788933160960