Myocardial infarction detection using ECG signal applying deep learning techniques - ConvNet, VGG16, InceptionV3 and MobileNet
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Päätekijät: | Promita, Samanta Tabassum, Biswas, Simon Abhijet, Mozumder, Nisat Islam, Taharat, Mamur |
---|---|
Muut tekijät: | Uddin, Jia |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
Brac University
2022
|
Aiheet: | |
Linkit: | http://hdl.handle.net/10361/16812 |
Samankaltaisia teoksia
-
Tomato leaf disease detection using Resnet-50 and MobileNet Architecture
Tekijä: Tahamid, Abu
Julkaistu: (2021) -
Plant disease diagnosis using deep transfer learning architectures- VGG19, MobileNetV2 and Inception-V3
Tekijä: Kobra, Khadija-Tul, et al.
Julkaistu: (2022) -
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
Tekijä: Bin Mushfiq, Rahil, et al.
Julkaistu: (2024) -
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
Tekijä: Sharma, Tanmoyee, et al.
Julkaistu: (2021) -
Multi-classification Network for Detecting Skin Diseases using Deep Learning and XAI
Tekijä: Athina, Fahima Hasan, et al.
Julkaistu: (2022)