Myocardial infarction detection using ECG signal applying deep learning techniques - ConvNet, VGG16, InceptionV3 and MobileNet
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Hlavní autoři: | Promita, Samanta Tabassum, Biswas, Simon Abhijet, Mozumder, Nisat Islam, Taharat, Mamur |
---|---|
Další autoři: | Uddin, Jia |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
Brac University
2022
|
Témata: | |
On-line přístup: | http://hdl.handle.net/10361/16812 |
Podobné jednotky
-
Tomato leaf disease detection using Resnet-50 and MobileNet Architecture
Autor: Tahamid, Abu
Vydáno: (2021) -
Plant disease diagnosis using deep transfer learning architectures- VGG19, MobileNetV2 and Inception-V3
Autor: Kobra, Khadija-Tul, a další
Vydáno: (2022) -
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
Autor: Bin Mushfiq, Rahil, a další
Vydáno: (2024) -
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
Autor: Sharma, Tanmoyee, a další
Vydáno: (2021) -
Multi-classification Network for Detecting Skin Diseases using Deep Learning and XAI
Autor: Athina, Fahima Hasan, a další
Vydáno: (2022)