Diabetic retinopathy detection and classification by using deep learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Egile Nagusiak: | Hossain, Shahriar, Evan, Md. Nurusshafi, Farhin, Fariya Zakir, Nabil, Mashrur Karim, Sadman, Sameen |
---|---|
Beste egile batzuk: | Chakrabarty, Amitabha |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2022
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/16810 |
Antzeko izenburuak
-
Early detection of diabetic retinopathy using deep learning techniques
nork: Gomes, Veronica Jessica, et al.
Argitaratua: (2022) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
nork: Shahriar, Hasan, et al.
Argitaratua: (2022) -
A deep learning approach towards soft biometrics attributes prediction using CNN
nork: Kibria, Maharab, et al.
Argitaratua: (2022) -
Gender classification in Bangla language using deep learning-based voice analysis
nork: Hakim, Talukder Juhaer, et al.
Argitaratua: (2024) -
Thoracic complication detection on chest X-rays using deep learning
nork: Ratul, Rizwanul Hoque, et al.
Argitaratua: (2021)