Traffic congestion detection and optimizing traffic flow using object detection, optical flow and fluid dynamics
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Egile Nagusiak: | Hossain, Md. Shahriyar, Bhuiyan, Md. Imtiaz, Dulali, Marjahan Akther |
---|---|
Beste egile batzuk: | Alam, Md. Ashraful |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2022
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/16668 |
Antzeko izenburuak
-
Traffic sign recognition using deep learning
nork: Amir, Afia Binte, et al.
Argitaratua: (2020) -
A machine learning approach to predicting and mitigating traffic congestion
nork: Faisal, Abu Fatah Mohammed, et al.
Argitaratua: (2024) -
A novel approach to forecast traffic congestion using CMTF and machine learning
nork: Chowdhury, Md. Mohiuddin, et al.
Argitaratua: (2018) -
Application of machine learning techniques on the context of predicting upcoming traffic congestion and providing the best preferred path
nork: Saquib, Muhammad Sadman, et al.
Argitaratua: (2019) -
Reducing traffic congestion through ride sharing in Bangladesh: a case study of Dhaka City
nork: Mollah, Md Lokman Hossain
Argitaratua: (2021)