Critical retinal disease detection from optical coherence tomography images by deep convolutional neural network and explainable machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Hoofdauteurs: | Datta, Pranab, Islam, Saniul, Das, Retuparna, Zabir, Mihiran Uddin |
---|---|
Andere auteurs: | Alam, Md. Golam Rabiul |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
Brac University
2021
|
Onderwerpen: | |
Online toegang: | http://hdl.handle.net/10361/15762 |
Gelijkaardige items
-
An efficient deep learning approach to detect retinal disease using optical coherence tomographic images
door: Khan, Farhan Sakib, et al.
Gepubliceerd in: (2022) -
Retinal Diseases Detection using Deep Learning
door: Mashfi, Shahriar, et al.
Gepubliceerd in: (2023) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
door: Shahriar, Hasan, et al.
Gepubliceerd in: (2022) -
An efficient deep learning approach to detect neurodegenerative diseases using retinal images
door: Irfanuddin, Chowdhury Mohammad, et al.
Gepubliceerd in: (2023) -
Diabetic retinopathy detection using machine learning
door: Maliha, Maisha, et al.
Gepubliceerd in: (2018)