Critical retinal disease detection from optical coherence tomography images by deep convolutional neural network and explainable machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Päätekijät: | Datta, Pranab, Islam, Saniul, Das, Retuparna, Zabir, Mihiran Uddin |
---|---|
Muut tekijät: | Alam, Md. Golam Rabiul |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
Brac University
2021
|
Aiheet: | |
Linkit: | http://hdl.handle.net/10361/15762 |
Samankaltaisia teoksia
-
An efficient deep learning approach to detect retinal disease using optical coherence tomographic images
Tekijä: Khan, Farhan Sakib, et al.
Julkaistu: (2022) -
Retinal Diseases Detection using Deep Learning
Tekijä: Mashfi, Shahriar, et al.
Julkaistu: (2023) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
Tekijä: Shahriar, Hasan, et al.
Julkaistu: (2022) -
An efficient deep learning approach to detect neurodegenerative diseases using retinal images
Tekijä: Irfanuddin, Chowdhury Mohammad, et al.
Julkaistu: (2023) -
Diabetic retinopathy detection using machine learning
Tekijä: Maliha, Maisha, et al.
Julkaistu: (2018)