Critical retinal disease detection from optical coherence tomography images by deep convolutional neural network and explainable machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Egile Nagusiak: | Datta, Pranab, Islam, Saniul, Das, Retuparna, Zabir, Mihiran Uddin |
---|---|
Beste egile batzuk: | Alam, Md. Golam Rabiul |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2021
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/15762 |
Antzeko izenburuak
-
An efficient deep learning approach to detect retinal disease using optical coherence tomographic images
nork: Khan, Farhan Sakib, et al.
Argitaratua: (2022) -
Retinal Diseases Detection using Deep Learning
nork: Mashfi, Shahriar, et al.
Argitaratua: (2023) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
nork: Shahriar, Hasan, et al.
Argitaratua: (2022) -
An efficient deep learning approach to detect neurodegenerative diseases using retinal images
nork: Irfanuddin, Chowdhury Mohammad, et al.
Argitaratua: (2023) -
Diabetic retinopathy detection using machine learning
nork: Maliha, Maisha, et al.
Argitaratua: (2018)