Recognition of Bangladeshi sign language from 2D videos using openpose and LSTM based RNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Autori principali: | Dewanjee, Tanmoy, Nuder, Azibun, Malek, Md. Imtiaz, Nanjiba, Refah, Rahman, Atia Anjum |
---|---|
Altri autori: | Alam, Md. Golam Rabiul |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2021
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/15758 |
Documenti analoghi
-
A novel lightweight CNN approach for Bangladeshi sign language gesture recognition
di: Rahman, Aryan, et al.
Pubblicazione: (2023) -
Voice impersonation detection using LSTM based RNN and explainable AI
di: Barua, Kawshik, et al.
Pubblicazione: (2022) -
RED-LSTM: Real time emotion detection using LSTM
di: Labiba, Mansura Rahman, et al.
Pubblicazione: (2023) -
Stock Market Price movement prediction using RNN and Point-weight Sentiment
di: Uddin, S. M. Rageeb Noor, et al.
Pubblicazione: (2022) -
Traffic sign recognition using deep learning
di: Amir, Afia Binte, et al.
Pubblicazione: (2020)