Recognition of Bangladeshi sign language from 2D videos using openpose and LSTM based RNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Egile Nagusiak: | Dewanjee, Tanmoy, Nuder, Azibun, Malek, Md. Imtiaz, Nanjiba, Refah, Rahman, Atia Anjum |
---|---|
Beste egile batzuk: | Alam, Md. Golam Rabiul |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2021
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/15758 |
Antzeko izenburuak
-
A novel lightweight CNN approach for Bangladeshi sign language gesture recognition
nork: Rahman, Aryan, et al.
Argitaratua: (2023) -
Voice impersonation detection using LSTM based RNN and explainable AI
nork: Barua, Kawshik, et al.
Argitaratua: (2022) -
RED-LSTM: Real time emotion detection using LSTM
nork: Labiba, Mansura Rahman, et al.
Argitaratua: (2023) -
Stock Market Price movement prediction using RNN and Point-weight Sentiment
nork: Uddin, S. M. Rageeb Noor, et al.
Argitaratua: (2022) -
Traffic sign recognition using deep learning
nork: Amir, Afia Binte, et al.
Argitaratua: (2020)