Exploring the applications of deep reinforcement learning and quantum variational circuit In quantum machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Asıl Yazarlar: | Saha, Prashanta Kumar, Saha, Vishal |
---|---|
Diğer Yazarlar: | Upoma, Ipshita Bonhi |
Materyal Türü: | Tez |
Dil: | English |
Baskı/Yayın Bilgisi: |
Brac University
2021
|
Konular: | |
Online Erişim: | http://hdl.handle.net/10361/15680 |
Benzer Materyaller
-
Quantum error correction using quantum convolutional neural network
Yazar:: Mishu, Niloy Deb Roy, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Pattern recognition with Quantum Support Vector Machine(QSVM) on near term quantum processors.
Yazar:: Ahmed, Sajjad
Baskı/Yayın Bilgisi: (2019) -
Reinforcement learning based autonomous vehicle for exploration and exploitation of undiscovered track
Yazar:: Issa, Razin Bin, ve diğerleri
Baskı/Yayın Bilgisi: (2020) -
Enhancing object clarity in single channel night vision images using deep reinforcement learning
Yazar:: Hossain, Adil, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
The Mathematical language of Quantum Theory
Yazar:: Teiko Heinosaari, Mário Ziman
Baskı/Yayın Bilgisi: (2012)