Exploring the applications of deep reinforcement learning and quantum variational circuit In quantum machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Главные авторы: | Saha, Prashanta Kumar, Saha, Vishal |
---|---|
Другие авторы: | Upoma, Ipshita Bonhi |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
Brac University
2021
|
Предметы: | |
Online-ссылка: | http://hdl.handle.net/10361/15680 |
Схожие документы
-
Quantum error correction using quantum convolutional neural network
по: Mishu, Niloy Deb Roy, и др.
Опубликовано: (2021) -
Pattern recognition with Quantum Support Vector Machine(QSVM) on near term quantum processors.
по: Ahmed, Sajjad
Опубликовано: (2019) -
Reinforcement learning based autonomous vehicle for exploration and exploitation of undiscovered track
по: Issa, Razin Bin, и др.
Опубликовано: (2020) -
Enhancing object clarity in single channel night vision images using deep reinforcement learning
по: Hossain, Adil, и др.
Опубликовано: (2021) -
The Mathematical language of Quantum Theory
по: Teiko Heinosaari, Mário Ziman
Опубликовано: (2012)