Exploring the applications of deep reinforcement learning and quantum variational circuit In quantum machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Autori principali: | Saha, Prashanta Kumar, Saha, Vishal |
---|---|
Altri autori: | Upoma, Ipshita Bonhi |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2021
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/15680 |
Documenti analoghi
-
Quantum error correction using quantum convolutional neural network
di: Mishu, Niloy Deb Roy, et al.
Pubblicazione: (2021) -
Pattern recognition with Quantum Support Vector Machine(QSVM) on near term quantum processors.
di: Ahmed, Sajjad
Pubblicazione: (2019) -
Reinforcement learning based autonomous vehicle for exploration and exploitation of undiscovered track
di: Issa, Razin Bin, et al.
Pubblicazione: (2020) -
Enhancing object clarity in single channel night vision images using deep reinforcement learning
di: Hossain, Adil, et al.
Pubblicazione: (2021) -
The Mathematical language of Quantum Theory
di: Teiko Heinosaari, Mário Ziman
Pubblicazione: (2012)