Exploring the applications of deep reinforcement learning and quantum variational circuit In quantum machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Egile Nagusiak: | Saha, Prashanta Kumar, Saha, Vishal |
---|---|
Beste egile batzuk: | Upoma, Ipshita Bonhi |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2021
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/15680 |
Antzeko izenburuak
-
Quantum error correction using quantum convolutional neural network
nork: Mishu, Niloy Deb Roy, et al.
Argitaratua: (2021) -
Pattern recognition with Quantum Support Vector Machine(QSVM) on near term quantum processors.
nork: Ahmed, Sajjad
Argitaratua: (2019) -
Reinforcement learning based autonomous vehicle for exploration and exploitation of undiscovered track
nork: Issa, Razin Bin, et al.
Argitaratua: (2020) -
Enhancing object clarity in single channel night vision images using deep reinforcement learning
nork: Hossain, Adil, et al.
Argitaratua: (2021) -
The Mathematical language of Quantum Theory
nork: Teiko Heinosaari, Mário Ziman
Argitaratua: (2012)