Exploring the applications of deep reinforcement learning and quantum variational circuit In quantum machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Autores principales: | Saha, Prashanta Kumar, Saha, Vishal |
---|---|
Otros Autores: | Upoma, Ipshita Bonhi |
Formato: | Tesis |
Lenguaje: | English |
Publicado: |
Brac University
2021
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/10361/15680 |
Ejemplares similares
-
Quantum error correction using quantum convolutional neural network
por: Mishu, Niloy Deb Roy, et al.
Publicado: (2021) -
Pattern recognition with Quantum Support Vector Machine(QSVM) on near term quantum processors.
por: Ahmed, Sajjad
Publicado: (2019) -
Reinforcement learning based autonomous vehicle for exploration and exploitation of undiscovered track
por: Issa, Razin Bin, et al.
Publicado: (2020) -
Enhancing object clarity in single channel night vision images using deep reinforcement learning
por: Hossain, Adil, et al.
Publicado: (2021) -
The Mathematical language of Quantum Theory
por: Teiko Heinosaari, Mário Ziman
Publicado: (2012)