Exploring the applications of deep reinforcement learning and quantum variational circuit In quantum machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Κύριοι συγγραφείς: | Saha, Prashanta Kumar, Saha, Vishal |
---|---|
Άλλοι συγγραφείς: | Upoma, Ipshita Bonhi |
Μορφή: | Thesis |
Γλώσσα: | English |
Έκδοση: |
Brac University
2021
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10361/15680 |
Παρόμοια τεκμήρια
-
Quantum error correction using quantum convolutional neural network
ανά: Mishu, Niloy Deb Roy, κ.ά.
Έκδοση: (2021) -
Pattern recognition with Quantum Support Vector Machine(QSVM) on near term quantum processors.
ανά: Ahmed, Sajjad
Έκδοση: (2019) -
Reinforcement learning based autonomous vehicle for exploration and exploitation of undiscovered track
ανά: Issa, Razin Bin, κ.ά.
Έκδοση: (2020) -
Enhancing object clarity in single channel night vision images using deep reinforcement learning
ανά: Hossain, Adil, κ.ά.
Έκδοση: (2021) -
The Mathematical language of Quantum Theory
ανά: Teiko Heinosaari, Mário Ziman
Έκδοση: (2012)