Exploring the applications of deep reinforcement learning and quantum variational circuit In quantum machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Hoofdauteurs: | Saha, Prashanta Kumar, Saha, Vishal |
---|---|
Andere auteurs: | Upoma, Ipshita Bonhi |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
Brac University
2021
|
Onderwerpen: | |
Online toegang: | http://hdl.handle.net/10361/15680 |
Gelijkaardige items
-
Quantum error correction using quantum convolutional neural network
door: Mishu, Niloy Deb Roy, et al.
Gepubliceerd in: (2021) -
Pattern recognition with Quantum Support Vector Machine(QSVM) on near term quantum processors.
door: Ahmed, Sajjad
Gepubliceerd in: (2019) -
Reinforcement learning based autonomous vehicle for exploration and exploitation of undiscovered track
door: Issa, Razin Bin, et al.
Gepubliceerd in: (2020) -
Enhancing object clarity in single channel night vision images using deep reinforcement learning
door: Hossain, Adil, et al.
Gepubliceerd in: (2021) -
The Mathematical language of Quantum Theory
door: Teiko Heinosaari, Mário Ziman
Gepubliceerd in: (2012)