Deep neural network models for COVID-19 diagnosis from CT-Scan, explainability and analysis using trained models
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Huvudupphovsmän: | Islam, Tahsin, Absar, Shahriar, Nasif, S.M. Ali Ijtihad, Mridul, Sadman Sakib |
---|---|
Övriga upphovsmän: | Islam, MD.Saiful |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
Brac University
2021
|
Ämnen: | |
Länkar: | http://hdl.handle.net/10361/15677 |
Liknande verk
-
Detection of intracranial hemorrhage on CT scan images using convolutional neural network
av: Rahman, Afridi Ibn, et al.
Publicerad: (2022) -
Comparative study of X-ray and CT scan images for the detection of COVID-19 using deep learning
av: Niloy, Ahashan Habib, et al.
Publicerad: (2021) -
A deep learning approach for pneumonia classification from chest X-Ray images with ensemble modelling and explainable AI
av: Akhter, Nasrin
Publicerad: (2023) -
X-Ray (2D) and CT-scanned (3D) image matching for person identification
av: Hossain, Khondker Fariha, et al.
Publicerad: (2018) -
Analyzing students’ concentration in online courses through Webcam
av: Asif, Md., et al.
Publicerad: (2024)