Deep neural network models for COVID-19 diagnosis from CT-Scan, explainability and analysis using trained models
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Główni autorzy: | Islam, Tahsin, Absar, Shahriar, Nasif, S.M. Ali Ijtihad, Mridul, Sadman Sakib |
---|---|
Kolejni autorzy: | Islam, MD.Saiful |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2021
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/15677 |
Podobne zapisy
-
Detection of intracranial hemorrhage on CT scan images using convolutional neural network
od: Rahman, Afridi Ibn, i wsp.
Wydane: (2022) -
Comparative study of X-ray and CT scan images for the detection of COVID-19 using deep learning
od: Niloy, Ahashan Habib, i wsp.
Wydane: (2021) -
A deep learning approach for pneumonia classification from chest X-Ray images with ensemble modelling and explainable AI
od: Akhter, Nasrin
Wydane: (2023) -
X-Ray (2D) and CT-scanned (3D) image matching for person identification
od: Hossain, Khondker Fariha, i wsp.
Wydane: (2018) -
Analyzing students’ concentration in online courses through Webcam
od: Asif, Md., i wsp.
Wydane: (2024)