Deep neural network models for COVID-19 diagnosis from CT-Scan, explainability and analysis using trained models
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Main Authors: | Islam, Tahsin, Absar, Shahriar, Nasif, S.M. Ali Ijtihad, Mridul, Sadman Sakib |
---|---|
Outros autores: | Islam, MD.Saiful |
Formato: | Thesis |
Idioma: | English |
Publicado: |
Brac University
2021
|
Subjects: | |
Acceso en liña: | http://hdl.handle.net/10361/15677 |
Títulos similares
-
Detection of intracranial hemorrhage on CT scan images using convolutional neural network
por: Rahman, Afridi Ibn, et al.
Publicado: (2022) -
Comparative study of X-ray and CT scan images for the detection of COVID-19 using deep learning
por: Niloy, Ahashan Habib, et al.
Publicado: (2021) -
A deep learning approach for pneumonia classification from chest X-Ray images with ensemble modelling and explainable AI
por: Akhter, Nasrin
Publicado: (2023) -
X-Ray (2D) and CT-scanned (3D) image matching for person identification
por: Hossain, Khondker Fariha, et al.
Publicado: (2018) -
Analyzing students’ concentration in online courses through Webcam
por: Asif, Md., et al.
Publicado: (2024)