ShielDroid: a hybrid ML and DL approach for real-time malware detection system in Android
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Autori principali: | Ahmed, Md Faisal, Biash, Zarin Tasnim, Shakil, Abu Raihan, Ryen, Ahmed Ann Noor, Hossain, Arman |
---|---|
Altri autori: | Hossain, Muhammad Iqbal |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2021
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/15550 |
Documenti analoghi
-
Malware detection in blockchain using CNN
di: Alam, Afreen, et al.
Pubblicazione: (2021) -
A study of malware classification using deep learning
di: Rahman, Mohammad Muhibur, et al.
Pubblicazione: (2024) -
Analysis of malware prediction based on infection rate using machine learning techniques
di: Zawad, Safir, et al.
Pubblicazione: (2020) -
Malware Detection Using Neural Network
di: Kayum, Syed Irfan, et al.
Pubblicazione: (2021) -
Analysing Facebook user risk using machine learning algorithm
di: Barua, Arnab, et al.
Pubblicazione: (2021)