ShielDroid: a hybrid ML and DL approach for real-time malware detection system in Android
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Egile Nagusiak: | Ahmed, Md Faisal, Biash, Zarin Tasnim, Shakil, Abu Raihan, Ryen, Ahmed Ann Noor, Hossain, Arman |
---|---|
Beste egile batzuk: | Hossain, Muhammad Iqbal |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2021
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/15550 |
Antzeko izenburuak
-
Malware detection in blockchain using CNN
nork: Alam, Afreen, et al.
Argitaratua: (2021) -
A study of malware classification using deep learning
nork: Rahman, Mohammad Muhibur, et al.
Argitaratua: (2024) -
Analysis of malware prediction based on infection rate using machine learning techniques
nork: Zawad, Safir, et al.
Argitaratua: (2020) -
Malware Detection Using Neural Network
nork: Kayum, Syed Irfan, et al.
Argitaratua: (2021) -
Analysing Facebook user risk using machine learning algorithm
nork: Barua, Arnab, et al.
Argitaratua: (2021)