LSTM based content prediction for edge caching using federated learning approach
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Hoofdauteurs: | Mazumder, Shafkat Ahmed, Paul, Piash, ZUBAIR, DIN MOHAMMAD, Haque, Maksudul, Mayukh, Jidni |
---|---|
Andere auteurs: | Alam, Md. Golam Rabiul |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
Brac University
2021
|
Onderwerpen: | |
Online toegang: | http://hdl.handle.net/10361/15208 |
Gelijkaardige items
-
Deep learning based predictive analytics for decentralized content caching in hierarchical edge networks
door: Chakraborty, Dhruba, et al.
Gepubliceerd in: (2022) -
Blockchain-based edge computing for medical data storage & processing using federated learning
door: Faiyaz, Fazle Rabbi, et al.
Gepubliceerd in: (2021) -
UAV assisted cooperative caching on network edge using multi agent Actor critic reinforcement learning
door: Araf, Sadman, et al.
Gepubliceerd in: (2021) -
Link performance analysis of Unmanned Aerial Vehicles
door: Oishi, Aniqa Tasnim, et al.
Gepubliceerd in: (2021) -
Real-time mastitis detection in livestock using deep learning and machine learning leveraging edge devices
door: Ghosh, Kawshik Kumar, et al.
Gepubliceerd in: (2023)