LSTM based content prediction for edge caching using federated learning approach
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Huvudupphovsmän: | Mazumder, Shafkat Ahmed, Paul, Piash, ZUBAIR, DIN MOHAMMAD, Haque, Maksudul, Mayukh, Jidni |
---|---|
Övriga upphovsmän: | Alam, Md. Golam Rabiul |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
Brac University
2021
|
Ämnen: | |
Länkar: | http://hdl.handle.net/10361/15208 |
Liknande verk
-
Deep learning based predictive analytics for decentralized content caching in hierarchical edge networks
av: Chakraborty, Dhruba, et al.
Publicerad: (2022) -
Blockchain-based edge computing for medical data storage & processing using federated learning
av: Faiyaz, Fazle Rabbi, et al.
Publicerad: (2021) -
UAV assisted cooperative caching on network edge using multi agent Actor critic reinforcement learning
av: Araf, Sadman, et al.
Publicerad: (2021) -
Link performance analysis of Unmanned Aerial Vehicles
av: Oishi, Aniqa Tasnim, et al.
Publicerad: (2021) -
Real-time mastitis detection in livestock using deep learning and machine learning leveraging edge devices
av: Ghosh, Kawshik Kumar, et al.
Publicerad: (2023)