Autonomous fault diagnosis of commercially available PV modules using high-end deep learning frameworks
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2021.
Główni autorzy: | Tasawar, Ihtyaz Kader, Tanzeem, Abyaz Kader, Ahmed, Tahmid, Zarin, Shah Faiza |
---|---|
Kolejni autorzy: | Rahman, Md. Mosaddequr |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2021
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/15153 |
Podobne zapisy
-
Infrared thermography based defect analysis of photovoltaic modules using machine learning
od: Mobin, Ovib Hassan, i wsp.
Wydane: (2021) -
Infrared thermography based performance analysis of photovoltaic modules
od: Amin, Moyukh, i wsp.
Wydane: (2019) -
A two-dimensional fault diagnosis model of induction motors using a gabor filter on segmented images
od: Uddin, Jia, i wsp.
Wydane: (2016) -
Fault analysis in solar photovoltaic arrays
od: Nunneh, Bill N.
Wydane: (2023) -
Deep learning based early Glaucoma detection
od: Islam, Aabrar, i wsp.
Wydane: (2024)