Autonomous fault diagnosis of commercially available PV modules using high-end deep learning frameworks
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2021.
Autori principali: | Tasawar, Ihtyaz Kader, Tanzeem, Abyaz Kader, Ahmed, Tahmid, Zarin, Shah Faiza |
---|---|
Altri autori: | Rahman, Md. Mosaddequr |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2021
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/15153 |
Documenti analoghi
-
Infrared thermography based defect analysis of photovoltaic modules using machine learning
di: Mobin, Ovib Hassan, et al.
Pubblicazione: (2021) -
Infrared thermography based performance analysis of photovoltaic modules
di: Amin, Moyukh, et al.
Pubblicazione: (2019) -
A two-dimensional fault diagnosis model of induction motors using a gabor filter on segmented images
di: Uddin, Jia, et al.
Pubblicazione: (2016) -
Fault analysis in solar photovoltaic arrays
di: Nunneh, Bill N.
Pubblicazione: (2023) -
Deep learning based early Glaucoma detection
di: Islam, Aabrar, et al.
Pubblicazione: (2024)