Autonomous fault diagnosis of commercially available PV modules using high-end deep learning frameworks
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2021.
Autores principales: | Tasawar, Ihtyaz Kader, Tanzeem, Abyaz Kader, Ahmed, Tahmid, Zarin, Shah Faiza |
---|---|
Otros Autores: | Rahman, Md. Mosaddequr |
Formato: | Tesis |
Lenguaje: | English |
Publicado: |
Brac University
2021
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/10361/15153 |
Ejemplares similares
-
Infrared thermography based defect analysis of photovoltaic modules using machine learning
por: Mobin, Ovib Hassan, et al.
Publicado: (2021) -
Infrared thermography based performance analysis of photovoltaic modules
por: Amin, Moyukh, et al.
Publicado: (2019) -
A two-dimensional fault diagnosis model of induction motors using a gabor filter on segmented images
por: Uddin, Jia, et al.
Publicado: (2016) -
Fault analysis in solar photovoltaic arrays
por: Nunneh, Bill N.
Publicado: (2023) -
Deep learning based early Glaucoma detection
por: Islam, Aabrar, et al.
Publicado: (2024)