Autonomous fault diagnosis of commercially available PV modules using high-end deep learning frameworks
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2021.
Egile Nagusiak: | Tasawar, Ihtyaz Kader, Tanzeem, Abyaz Kader, Ahmed, Tahmid, Zarin, Shah Faiza |
---|---|
Beste egile batzuk: | Rahman, Md. Mosaddequr |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2021
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/15153 |
Antzeko izenburuak
-
Infrared thermography based defect analysis of photovoltaic modules using machine learning
nork: Mobin, Ovib Hassan, et al.
Argitaratua: (2021) -
Infrared thermography based performance analysis of photovoltaic modules
nork: Amin, Moyukh, et al.
Argitaratua: (2019) -
A two-dimensional fault diagnosis model of induction motors using a gabor filter on segmented images
nork: Uddin, Jia, et al.
Argitaratua: (2016) -
Fault analysis in solar photovoltaic arrays
nork: Nunneh, Bill N.
Argitaratua: (2023) -
Deep learning based early Glaucoma detection
nork: Islam, Aabrar, et al.
Argitaratua: (2024)