Comparative study of X-ray and CT scan images for the detection of COVID-19 using deep learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Główni autorzy: | Niloy, Ahashan Habib, Shiba, Shammi Akhter, Fahim, S.M. Farah Al, Faria, Faizun Nahar, Rahman, Md. Jamilur |
---|---|
Kolejni autorzy: | Parvez, Mohammad Zavid |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2021
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/15147 |
Podobne zapisy
-
X-Ray (2D) and CT-scanned (3D) image matching for person identification
od: Hossain, Khondker Fariha, i wsp.
Wydane: (2018) -
Deep neural network models for COVID-19 diagnosis from CT-Scan, explainability and analysis using trained models
od: Islam, Tahsin, i wsp.
Wydane: (2021) -
Demystify the blackbox model of automated detection of lung and kidney diseases from X-ray and CT radiographs
od: Islam, Md. Nazmul
Wydane: (2023) -
An efficient deep learning approach to detect COVID-19 infected lungs using image data
od: Kabir, Asif Rezwan, i wsp.
Wydane: (2022) -
X-Ray classification to detect COVID-19 using ensemble model
od: Solaiman, Ishmam Ahmed, i wsp.
Wydane: (2021)