Comparative study of X-ray and CT scan images for the detection of COVID-19 using deep learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
主要な著者: | Niloy, Ahashan Habib, Shiba, Shammi Akhter, Fahim, S.M. Farah Al, Faria, Faizun Nahar, Rahman, Md. Jamilur |
---|---|
その他の著者: | Parvez, Mohammad Zavid |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
Brac University
2021
|
主題: | |
オンライン・アクセス: | http://hdl.handle.net/10361/15147 |
類似資料
-
X-Ray (2D) and CT-scanned (3D) image matching for person identification
著者:: Hossain, Khondker Fariha, 等
出版事項: (2018) -
Deep neural network models for COVID-19 diagnosis from CT-Scan, explainability and analysis using trained models
著者:: Islam, Tahsin, 等
出版事項: (2021) -
Demystify the blackbox model of automated detection of lung and kidney diseases from X-ray and CT radiographs
著者:: Islam, Md. Nazmul
出版事項: (2023) -
An efficient deep learning approach to detect COVID-19 infected lungs using image data
著者:: Kabir, Asif Rezwan, 等
出版事項: (2022) -
X-Ray classification to detect COVID-19 using ensemble model
著者:: Solaiman, Ishmam Ahmed, 等
出版事項: (2021)