Comparative study of X-ray and CT scan images for the detection of COVID-19 using deep learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Päätekijät: | Niloy, Ahashan Habib, Shiba, Shammi Akhter, Fahim, S.M. Farah Al, Faria, Faizun Nahar, Rahman, Md. Jamilur |
---|---|
Muut tekijät: | Parvez, Mohammad Zavid |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
Brac University
2021
|
Aiheet: | |
Linkit: | http://hdl.handle.net/10361/15147 |
Samankaltaisia teoksia
-
X-Ray (2D) and CT-scanned (3D) image matching for person identification
Tekijä: Hossain, Khondker Fariha, et al.
Julkaistu: (2018) -
Deep neural network models for COVID-19 diagnosis from CT-Scan, explainability and analysis using trained models
Tekijä: Islam, Tahsin, et al.
Julkaistu: (2021) -
Demystify the blackbox model of automated detection of lung and kidney diseases from X-ray and CT radiographs
Tekijä: Islam, Md. Nazmul
Julkaistu: (2023) -
An efficient deep learning approach to detect COVID-19 infected lungs using image data
Tekijä: Kabir, Asif Rezwan, et al.
Julkaistu: (2022) -
X-Ray classification to detect COVID-19 using ensemble model
Tekijä: Solaiman, Ishmam Ahmed, et al.
Julkaistu: (2021)