Comparative study of X-ray and CT scan images for the detection of COVID-19 using deep learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Egile Nagusiak: | Niloy, Ahashan Habib, Shiba, Shammi Akhter, Fahim, S.M. Farah Al, Faria, Faizun Nahar, Rahman, Md. Jamilur |
---|---|
Beste egile batzuk: | Parvez, Mohammad Zavid |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2021
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/15147 |
Antzeko izenburuak
-
X-Ray (2D) and CT-scanned (3D) image matching for person identification
nork: Hossain, Khondker Fariha, et al.
Argitaratua: (2018) -
Deep neural network models for COVID-19 diagnosis from CT-Scan, explainability and analysis using trained models
nork: Islam, Tahsin, et al.
Argitaratua: (2021) -
Demystify the blackbox model of automated detection of lung and kidney diseases from X-ray and CT radiographs
nork: Islam, Md. Nazmul
Argitaratua: (2023) -
An efficient deep learning approach to detect COVID-19 infected lungs using image data
nork: Kabir, Asif Rezwan, et al.
Argitaratua: (2022) -
X-Ray classification to detect COVID-19 using ensemble model
nork: Solaiman, Ishmam Ahmed, et al.
Argitaratua: (2021)