Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2021
Главные авторы: | Sharma, Tanmoyee, Tabassum, Zaharat, Banik, Ritu, Rahman, S.M.Arifur |
---|---|
Другие авторы: | Mohsin, Abu S.M. |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
Brac University
2021
|
Предметы: | |
Online-ссылка: | http://hdl.handle.net/10361/15142 |
Схожие документы
-
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
по: Bin Mushfiq, Rahil, и др.
Опубликовано: (2024) -
An active-learning based training-schedule for biomedical image segmentation on deep neural networks
по: Hassan, Mehadi, и др.
Опубликовано: (2021) -
Semantic segmentation with attention dense U-net for lung extraction from X-ray images
по: Auvy, Akib Al Mahmud, и др.
Опубликовано: (2023) -
Exploring deep features: deeper fully convolutional neural network for image segmentation
по: Kamran, Sharif Amit, и др.
Опубликовано: (2017) -
Pyramid pooling enhanced ResUNet for accurate 3D brain image segmentation
по: Mollah, Md. Shawon, и др.
Опубликовано: (2024)