Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2021
Główni autorzy: | Sharma, Tanmoyee, Tabassum, Zaharat, Banik, Ritu, Rahman, S.M.Arifur |
---|---|
Kolejni autorzy: | Mohsin, Abu S.M. |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2021
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/15142 |
Podobne zapisy
-
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
od: Bin Mushfiq, Rahil, i wsp.
Wydane: (2024) -
An active-learning based training-schedule for biomedical image segmentation on deep neural networks
od: Hassan, Mehadi, i wsp.
Wydane: (2021) -
Semantic segmentation with attention dense U-net for lung extraction from X-ray images
od: Auvy, Akib Al Mahmud, i wsp.
Wydane: (2023) -
Exploring deep features: deeper fully convolutional neural network for image segmentation
od: Kamran, Sharif Amit, i wsp.
Wydane: (2017) -
Pyramid pooling enhanced ResUNet for accurate 3D brain image segmentation
od: Mollah, Md. Shawon, i wsp.
Wydane: (2024)