Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2021
Hoofdauteurs: | Sharma, Tanmoyee, Tabassum, Zaharat, Banik, Ritu, Rahman, S.M.Arifur |
---|---|
Andere auteurs: | Mohsin, Abu S.M. |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
Brac University
2021
|
Onderwerpen: | |
Online toegang: | http://hdl.handle.net/10361/15142 |
Gelijkaardige items
-
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
door: Bin Mushfiq, Rahil, et al.
Gepubliceerd in: (2024) -
An active-learning based training-schedule for biomedical image segmentation on deep neural networks
door: Hassan, Mehadi, et al.
Gepubliceerd in: (2021) -
Semantic segmentation with attention dense U-net for lung extraction from X-ray images
door: Auvy, Akib Al Mahmud, et al.
Gepubliceerd in: (2023) -
Exploring deep features: deeper fully convolutional neural network for image segmentation
door: Kamran, Sharif Amit, et al.
Gepubliceerd in: (2017) -
Pyramid pooling enhanced ResUNet for accurate 3D brain image segmentation
door: Mollah, Md. Shawon, et al.
Gepubliceerd in: (2024)