Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2021
主要な著者: | Sharma, Tanmoyee, Tabassum, Zaharat, Banik, Ritu, Rahman, S.M.Arifur |
---|---|
その他の著者: | Mohsin, Abu S.M. |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
Brac University
2021
|
主題: | |
オンライン・アクセス: | http://hdl.handle.net/10361/15142 |
類似資料
-
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
著者:: Bin Mushfiq, Rahil, 等
出版事項: (2024) -
An active-learning based training-schedule for biomedical image segmentation on deep neural networks
著者:: Hassan, Mehadi, 等
出版事項: (2021) -
Semantic segmentation with attention dense U-net for lung extraction from X-ray images
著者:: Auvy, Akib Al Mahmud, 等
出版事項: (2023) -
Exploring deep features: deeper fully convolutional neural network for image segmentation
著者:: Kamran, Sharif Amit, 等
出版事項: (2017) -
Pyramid pooling enhanced ResUNet for accurate 3D brain image segmentation
著者:: Mollah, Md. Shawon, 等
出版事項: (2024)