Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2021
Autori principali: | Sharma, Tanmoyee, Tabassum, Zaharat, Banik, Ritu, Rahman, S.M.Arifur |
---|---|
Altri autori: | Mohsin, Abu S.M. |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2021
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/15142 |
Documenti analoghi
-
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
di: Bin Mushfiq, Rahil, et al.
Pubblicazione: (2024) -
An active-learning based training-schedule for biomedical image segmentation on deep neural networks
di: Hassan, Mehadi, et al.
Pubblicazione: (2021) -
Semantic segmentation with attention dense U-net for lung extraction from X-ray images
di: Auvy, Akib Al Mahmud, et al.
Pubblicazione: (2023) -
Exploring deep features: deeper fully convolutional neural network for image segmentation
di: Kamran, Sharif Amit, et al.
Pubblicazione: (2017) -
Pyramid pooling enhanced ResUNet for accurate 3D brain image segmentation
di: Mollah, Md. Shawon, et al.
Pubblicazione: (2024)