Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2021
Príomhchruthaitheoirí: | Sharma, Tanmoyee, Tabassum, Zaharat, Banik, Ritu, Rahman, S.M.Arifur |
---|---|
Rannpháirtithe: | Mohsin, Abu S.M. |
Formáid: | Tráchtas |
Teanga: | English |
Foilsithe / Cruthaithe: |
Brac University
2021
|
Ábhair: | |
Rochtain ar líne: | http://hdl.handle.net/10361/15142 |
Míreanna comhchosúla
-
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
de réir: Bin Mushfiq, Rahil, et al.
Foilsithe / Cruthaithe: (2024) -
An active-learning based training-schedule for biomedical image segmentation on deep neural networks
de réir: Hassan, Mehadi, et al.
Foilsithe / Cruthaithe: (2021) -
Semantic segmentation with attention dense U-net for lung extraction from X-ray images
de réir: Auvy, Akib Al Mahmud, et al.
Foilsithe / Cruthaithe: (2023) -
Exploring deep features: deeper fully convolutional neural network for image segmentation
de réir: Kamran, Sharif Amit, et al.
Foilsithe / Cruthaithe: (2017) -
Pyramid pooling enhanced ResUNet for accurate 3D brain image segmentation
de réir: Mollah, Md. Shawon, et al.
Foilsithe / Cruthaithe: (2024)