Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2021
Egile Nagusiak: | Sharma, Tanmoyee, Tabassum, Zaharat, Banik, Ritu, Rahman, S.M.Arifur |
---|---|
Beste egile batzuk: | Mohsin, Abu S.M. |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2021
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/15142 |
Antzeko izenburuak
-
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
nork: Bin Mushfiq, Rahil, et al.
Argitaratua: (2024) -
An active-learning based training-schedule for biomedical image segmentation on deep neural networks
nork: Hassan, Mehadi, et al.
Argitaratua: (2021) -
Semantic segmentation with attention dense U-net for lung extraction from X-ray images
nork: Auvy, Akib Al Mahmud, et al.
Argitaratua: (2023) -
Exploring deep features: deeper fully convolutional neural network for image segmentation
nork: Kamran, Sharif Amit, et al.
Argitaratua: (2017) -
Pyramid pooling enhanced ResUNet for accurate 3D brain image segmentation
nork: Mollah, Md. Shawon, et al.
Argitaratua: (2024)