An active-learning based training-schedule for biomedical image segmentation on deep neural networks
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Asıl Yazarlar: | Hassan, Mehadi, Das, Shemonto, Dipu, Shoaib Ahmed |
---|---|
Diğer Yazarlar: | Majumdar, Mahbubul Alam |
Materyal Türü: | Tez |
Dil: | en_US |
Baskı/Yayın Bilgisi: |
Brac University
2021
|
Konular: | |
Online Erişim: | http://hdl.handle.net/10361/14809 |
Benzer Materyaller
-
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
Yazar:: Sharma, Tanmoyee, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Exploring deep features: deeper fully convolutional neural network for image segmentation
Yazar:: Kamran, Sharif Amit, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
3D Brain image segmentation using 3D tiled convolution neural networks
Yazar:: Haque, Md Mahibul, ve diğerleri
Baskı/Yayın Bilgisi: (2024) -
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
Yazar:: Bin Mushfiq, Rahil, ve diğerleri
Baskı/Yayın Bilgisi: (2024) -
Kidney Disease detection and classification from CT Images using Watershed Segmentation and Deep Learning.
Yazar:: Hossain, Mohammad Sakib, ve diğerleri
Baskı/Yayın Bilgisi: (2023)