An active-learning based training-schedule for biomedical image segmentation on deep neural networks
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
主要な著者: | Hassan, Mehadi, Das, Shemonto, Dipu, Shoaib Ahmed |
---|---|
その他の著者: | Majumdar, Mahbubul Alam |
フォーマット: | 学位論文 |
言語: | en_US |
出版事項: |
Brac University
2021
|
主題: | |
オンライン・アクセス: | http://hdl.handle.net/10361/14809 |
類似資料
-
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
著者:: Sharma, Tanmoyee, 等
出版事項: (2021) -
Exploring deep features: deeper fully convolutional neural network for image segmentation
著者:: Kamran, Sharif Amit, 等
出版事項: (2017) -
3D Brain image segmentation using 3D tiled convolution neural networks
著者:: Haque, Md Mahibul, 等
出版事項: (2024) -
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
著者:: Bin Mushfiq, Rahil, 等
出版事項: (2024) -
Kidney Disease detection and classification from CT Images using Watershed Segmentation and Deep Learning.
著者:: Hossain, Mohammad Sakib, 等
出版事項: (2023)