An active-learning based training-schedule for biomedical image segmentation on deep neural networks
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Auteurs principaux: | Hassan, Mehadi, Das, Shemonto, Dipu, Shoaib Ahmed |
---|---|
Autres auteurs: | Majumdar, Mahbubul Alam |
Format: | Thèse |
Langue: | en_US |
Publié: |
Brac University
2021
|
Sujets: | |
Accès en ligne: | http://hdl.handle.net/10361/14809 |
Documents similaires
-
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
par: Sharma, Tanmoyee, et autres
Publié: (2021) -
Exploring deep features: deeper fully convolutional neural network for image segmentation
par: Kamran, Sharif Amit, et autres
Publié: (2017) -
3D Brain image segmentation using 3D tiled convolution neural networks
par: Haque, Md Mahibul, et autres
Publié: (2024) -
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
par: Bin Mushfiq, Rahil, et autres
Publié: (2024) -
Kidney Disease detection and classification from CT Images using Watershed Segmentation and Deep Learning.
par: Hossain, Mohammad Sakib, et autres
Publié: (2023)