An active-learning based training-schedule for biomedical image segmentation on deep neural networks
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Egile Nagusiak: | Hassan, Mehadi, Das, Shemonto, Dipu, Shoaib Ahmed |
---|---|
Beste egile batzuk: | Majumdar, Mahbubul Alam |
Formatua: | Thesis |
Hizkuntza: | en_US |
Argitaratua: |
Brac University
2021
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/14809 |
Antzeko izenburuak
-
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
nork: Sharma, Tanmoyee, et al.
Argitaratua: (2021) -
Exploring deep features: deeper fully convolutional neural network for image segmentation
nork: Kamran, Sharif Amit, et al.
Argitaratua: (2017) -
3D Brain image segmentation using 3D tiled convolution neural networks
nork: Haque, Md Mahibul, et al.
Argitaratua: (2024) -
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
nork: Bin Mushfiq, Rahil, et al.
Argitaratua: (2024) -
Kidney Disease detection and classification from CT Images using Watershed Segmentation and Deep Learning.
nork: Hossain, Mohammad Sakib, et al.
Argitaratua: (2023)