An active-learning based training-schedule for biomedical image segmentation on deep neural networks
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
Κύριοι συγγραφείς: | Hassan, Mehadi, Das, Shemonto, Dipu, Shoaib Ahmed |
---|---|
Άλλοι συγγραφείς: | Majumdar, Mahbubul Alam |
Μορφή: | Thesis |
Γλώσσα: | en_US |
Έκδοση: |
Brac University
2021
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10361/14809 |
Παρόμοια τεκμήρια
-
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
ανά: Sharma, Tanmoyee, κ.ά.
Έκδοση: (2021) -
Exploring deep features: deeper fully convolutional neural network for image segmentation
ανά: Kamran, Sharif Amit, κ.ά.
Έκδοση: (2017) -
3D Brain image segmentation using 3D tiled convolution neural networks
ανά: Haque, Md Mahibul, κ.ά.
Έκδοση: (2024) -
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
ανά: Bin Mushfiq, Rahil, κ.ά.
Έκδοση: (2024) -
Kidney Disease detection and classification from CT Images using Watershed Segmentation and Deep Learning.
ανά: Hossain, Mohammad Sakib, κ.ά.
Έκδοση: (2023)